

HEALTH PROFESSIONALS

Topic on Focus on Rare Coagulation Disorders

An overview of inherited fibrinogen disorders with a focus on laboratory diagnosis

Alessandro Casini

University Hospitals of Geneva

April 1, 2025

Disclosures / Conflicts of Interest

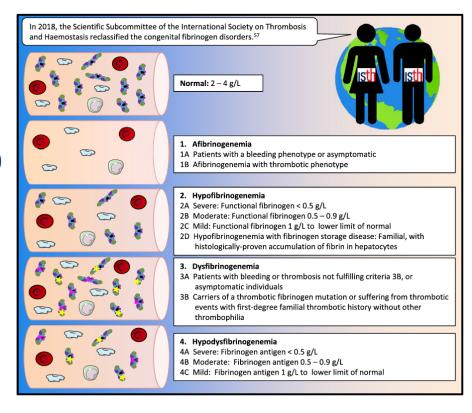
Grants and fees paid to my institution from Sobi, Takeda, LFB, and Novo Nordisk; Advisory boards for Sobi, LFB

An overview of inherited fibrinogen disorders with a focus on laboratory diagnosis

Inherited fibrinogen disorders are rare bleeding or thrombotic conditions caused by quantitative or qualitative defects in fibrinogen. This webinar will provide an overview of the molecular and clinical characteristics of these disorders, with an emphasis on the role of laboratory testing in diagnosis and classification. We will also discuss diagnostic challenges, available assays, and interpretation of results to guide patient management.

- Describe the types and genetic basis of inherited fibrinogen disorders.
- Understand the principles and limitations of laboratory assays used to evaluate fibrinogen.
- Interpret laboratory findings to differentiate between quantitative and qualitative fibrinogen deficiencies.
- Identify the clinical manifestations and summarize recommendations for treatment

- Diagnosis of hereditary fibrinogen disorders (HFDs)
- Genotype
- Clinical features
- Management
- Conclusions


Types and subtypes of HFDs

1-29:1′000′000

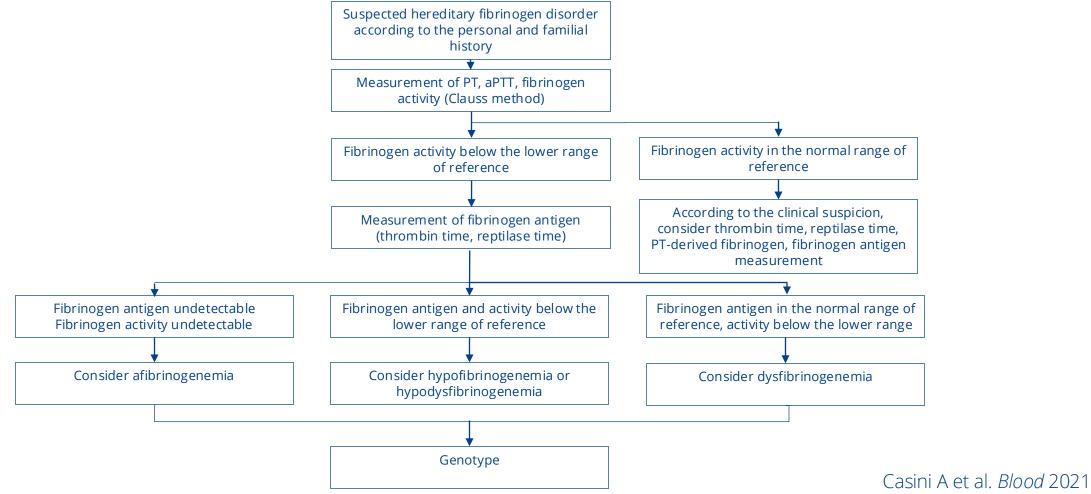
8-15:1000 (?)

8-15:1000 (?)

(?

Quantitative deficiencies

Qualitative deficiencies


Couzens A et al. *Hamostaseologie* 2025 Pieters M et al. *Res Pract Thromb Hamost* 2019

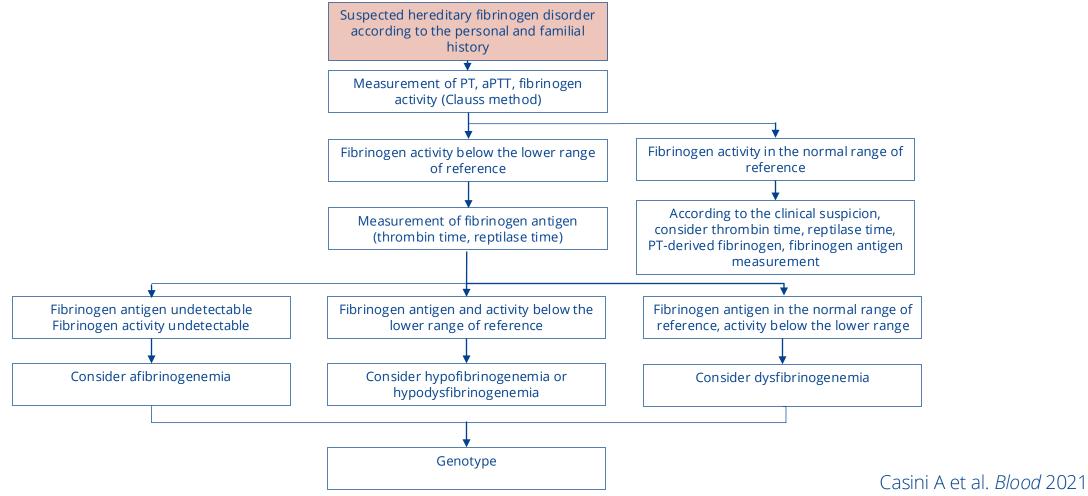
Diagnosis of HFDs

When to suspect an HFD?

- Incidental discovery of low fibrinogen levels
- Unexplained tendency to bleeding
- Thrombosis, especially in young and positive familial history, without more common thrombophilia
- Pregnancy morbidity
- Familial history or screening
- No causes of acquired fibrinogen disorder

Acquired fibrinogen disorders

Condition	Mechanism	Examples of causes		
Hypofibrinogenaemia	Decreased fibrinogen synthesis	Liver disease		
	Increased fibrinogen consumption	Sepsis, DIC, thrombolytic therapy		
	Haemodilution	Massive transfusion		
Dysfibrinogenaemia	Protein modification	Abnormal sialylation		
	Autoantibodies	Autoimmune disease, myeloma, drug- induced		
	Interfering substances	Heparin, DTI		


Tocilizumab
Tygecline
Alteplase
Asparaginase
Dexamethasone

Wen X et al. *Int J Clin Pharm* 2025 Mackie I et al. *Int J Lab Hematol* 2024

Diagnosis of HFDs

Tests available for fibrinogen investigations

Screening/ Standard tests	
Thrombin clotting time (TT) and Clauss assay	Initial screening test for functional fibrinogen
	Great reagent variability in TT
	Higher concentration thrombin is added to diluted plasma in Clauss assay
	Thrombin inhibitors influence the results (TT is more sensitive than Clauss assay)
PT-Fg assay	Measurement of fibrinogen estimates
	Not recommended for initial screening test
	Should be avoided under anticoagulation therapy
	Over estimate fibrinogen amount in qualitative fibrinogen anomalies
Reptilase time	A snake venom, Batroxobin is used
	Cleavage fibrinogen to release fibrinopeptide A
	Not inhibited by thrombin inhibitors

Viscoelastic method	Fibrinogen function can be assessed if suitable reagents/parameters are used			
	Available for emergency assessment (e.g., major trauma or cardiac surgery)			
Clot waveform analysis	A novel approach for differential diagnosis of fibrinogen abnormalities			
	Available on certain analysers			
Fibrinogen antigen	ELISA or immunoturbidimetric assays are generally used			
	Necessary for diagnosing fibrinogen disorders			
Specialist	Total clottable protein assays			
techniques	Fibrinopeptide release			
	Fibrin monomer polymerisation			
	Clot permeability			
	Rheometry			
	Microscopy			

Mackie I et al. Int J Lab Hematol 2024

Common problem faced by laboratories

Measurement of fibrinogen antigen is mandatory to distinguish:

- Hypofibrinogenemia from dysfibrinogenemia
- Hypofibrinogenemia from hypodysfibrinogenemia

Measurement of fibrinogen antigen is not widely available

- Most of laboratories do not assess antigen
- The diagnosis is often "hypofibrinogenemia"

Pitfalls in the diagnosis of quantitative HFDs

Low detection limit:

Afibrinogenemia vs Severe hypofibrinogenemia?

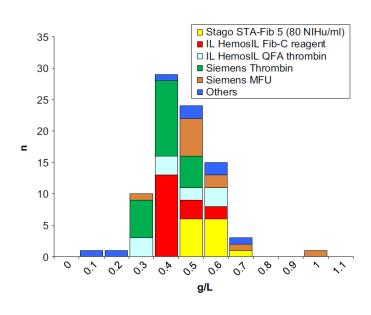
Circulating variant:

Hypofibrinogenemia vs Hypodysfibrinogenemia?

Mass spectrometry
Protein expression

research

Genotype


Brennan SO et al. *Thromb Haemost* 2014 Asselta R et al. *Thromb Haemost* 2015

Pitfalls in the diagnosis of dysfibrinogenemia

Depends on reagent and method

	Dysfi	FB14:01 Dysfibrinogenaemia (γ p.Arg301Cys)				l:02 .ongmont 166Arg3Cys)		
	n	Median	Range	CV (%) ^a	n	Median	Range	CV (%) ^a
PT (ratio)	75	1.35	1.00-1.80	14.7	74	1.00	0.86-6.00	6.9 (71.8)
APTT (ratio)	86	1.03	0.75-1.25	8.5	86	0.96	0.87-3.75	7.1 (40.8)
Clauss Fibrinogen (g/L)	84	0.45	0.13-7.45	24.8 (145)	66	4.54	0.10-12.8	59.6
Derived fibrinogen (g/L)	22	3.84	1.54-5.30	25.2	20	1.02	0.35-2.14	43.7
Thrombin time (ratio)	74	2.15	1.68-6.75	8.4 (28.2)	73	1.29	0.81-1.88	16.4
Reptilase Time (ratio)	45	2.20	1.62-5.34	29.1	52	1.10	0.73-2.11	21.7
Fibrinogen antigen (g/L)	27	2.44	0.37-3.19	30.5	26	3.55	2.41-5.26	18.3

Depends on variant and method

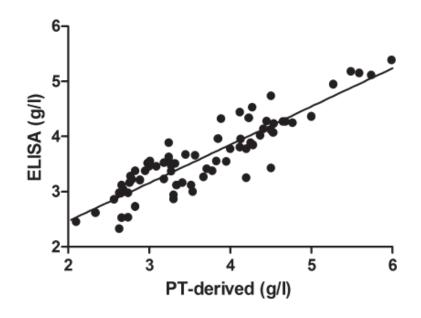
Jennings K et al. Int J Lab Hematol 2017

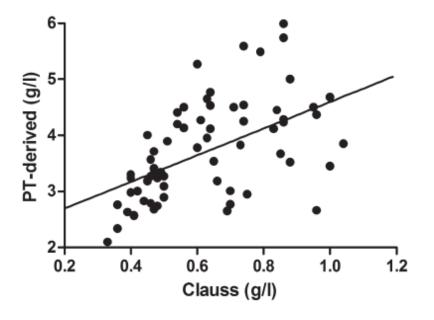
PT-derived method in dysfibrinogenemia

	Clauss assay		Prothrombin (PT) derived assay		Immun.	Heat	
Patient	STA FIB-C g/l	ACL-Top FIB-C g/l	STA Fib PTder g/l	ACL-Top Fib PTder g/l	g/l	g/l	
1	<0.60	<0.30	2.12	1.97	1.40	1.50	
2	< 0.60	0.35	2.64	2.52	3.12	3.00	
3	< 0.60	0.39	3.04	2.63	3.12	3.00	
4	< 0.60	< 0.30	2.58	2.41	1.40	1.80	
5	< 0.60	0.37	2.91	2.56	3.12	3.00	
6	< 0.60	0.34	2.79	2.32	4.08	3.00	
7	0.78	0.71	1.89	1.51	1.30	1.20	
8	< 0.60	< 0.30	1.50	1.34	1.02	1.20	
9	< 0.60	< 0.30	2.58	2.35	2.50	1.80	
10	< 0.60	0.37	2.46	2.36	2.50	2.40	
11	< 0.60	< 0.30	2.23	1.97	1.92	1.50	
12	< 0.60	0.34	2.15	2.09	2.15	2.40	
13	< 0.60	0.35	2.68	2.50	3.26	2.50	
14	< 0.60	0.40	2.76	2.68	3.12	3.70	
15	0.92	1.00	1.38	0.97	1.11	120	
16	0.77	0.50	3.46	3.55	3.66	4.30	
17	< 0.60	0.41	2.81	2.51	2.74	2.40	
18	1.57	1.08	4.39	4.87	4.23	5.60	
19	< 0.60	0.37	3.21	2.81	3.12	3.70	
20	0.73	0.49	3.19	2.99	3.00	6.25	
21	< 0.60	0.50	2.12	1.80	1.40	1.80	
22	0.81	0.57	3.82	3.87	3.94	5.00	
23	2.20	1.08	4.10	3.63	Nd	3.70	
24	< 0.60	0.42	2.46	2.06	Nd	3.00	
25	1.97	2.07	2.51	2.14	Nd	1.80	
26	0.70	0.51	3.28	3.16	2.74	6.25	
27	1.43	1.55	1.80	1.70	Nd	1.40	
Median	0.60	0.40	2.64	2.41	2.74	2.50	
Range	0.60-2.20	0.30-2.07	1.38-4.39	0.97–4.87	1.02-4.23	1.20-6.25	
Normal range	1.5–4.5	2.67–4.37	2.0-4.0	1.84–4.8	2.05 -4.39	2.0-4.0	

PT-derived overestimates functional fibrinogen levels

PT-derived method similar to antigen measurement

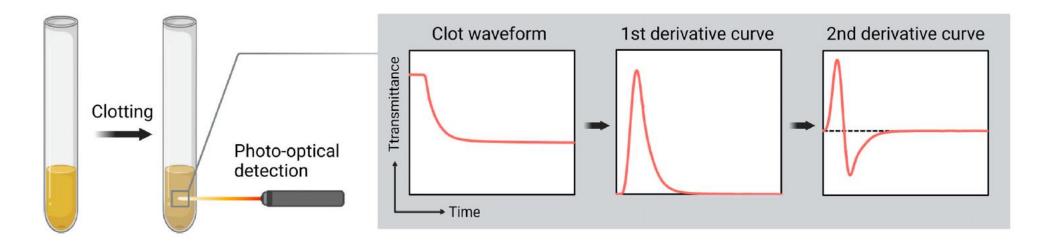

Miesbach K et al. Thromb Res 2010



PT-derived fibrinogen versus Clauss

Dysfibrinogenemia, n=73
Cut-off ratio PT-derived / Clauss >1.43

o 100% specificity and sensitivity

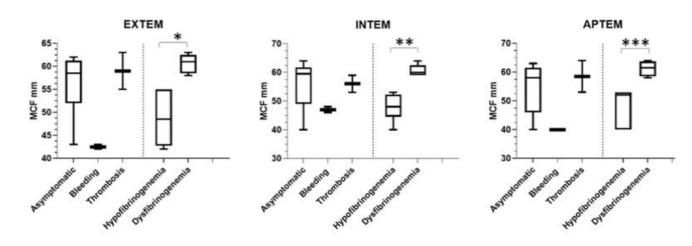

Xiang et al. *Int J Lab Hem* 2018 Luo M et al. *Thromb Res* 2020

Clauss-CWA

The minimum value of the 1st derivative curve correlates with fibrinogen antigen (Min1) Cut-off ratio Clauss / Min1 < 0.65

96% sensitivity and 100% specificity

Suzuki A et al. *Sci Rep* 2022 Arai S et al. *Int J Lab Hematol* 2021 Arai S et al. *Clin Chim Acta* 2021

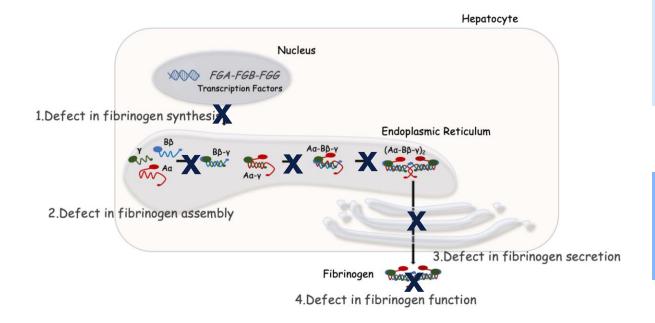


Viscoelastic assays

Szanto T et al. Int. J. Mol. Sci 2021

Conclusions 1

- o To investigate fibrinogen disorders, it is essential to measure functional and antigen fibrinogen
- If antigen assessment is not available, indirect methods can be employed (PT-derived fibrinogen, Clauss CWA)
- The genotype is important in confirming the diagnosis



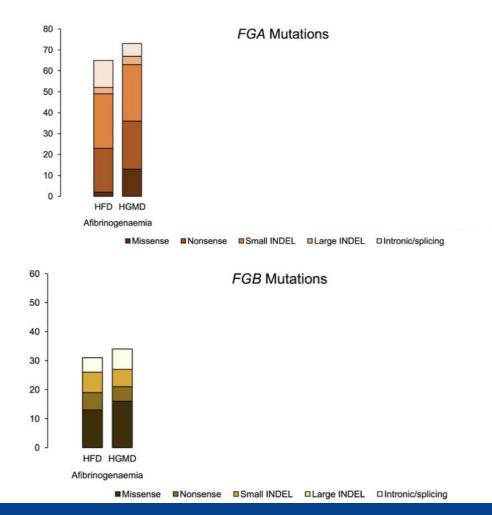
- Diagnosis of hereditary fibrinogen disorders (HFDs)
- Genotype
- Clinical features
- Management
- Conclusions

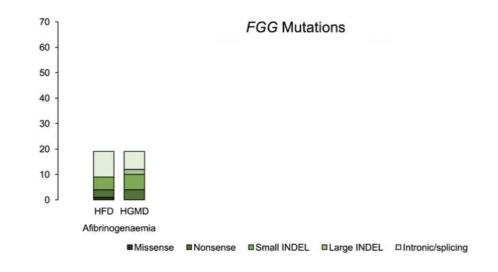
Monogenic disease

Quantitative disorder

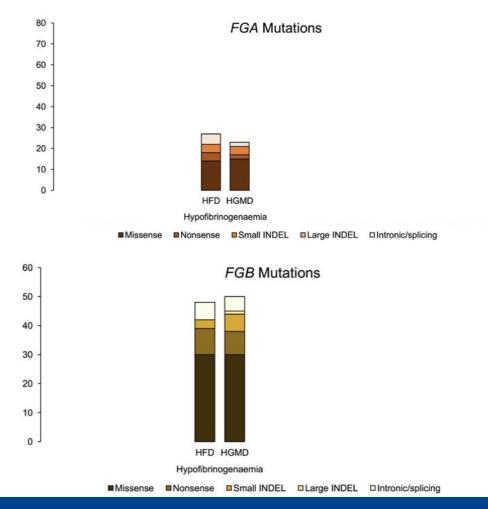
- Afibrinogenemia
- Hypofibrinogenemia

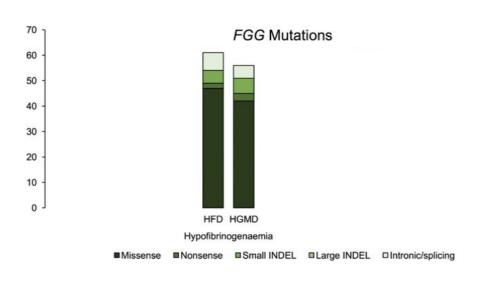
Qualitative disorder


- Dysfibrinogenemia
- Hypodysfibrinogenemia

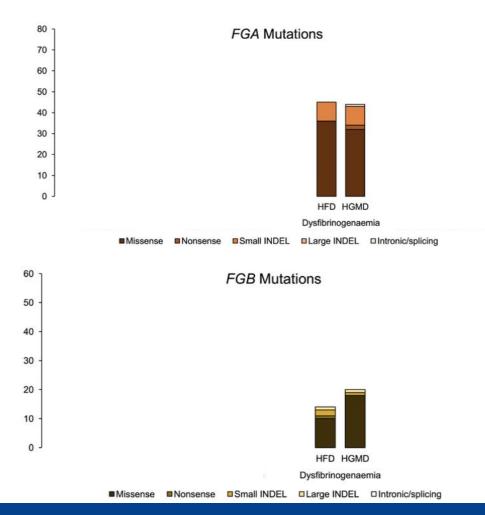

Neerman-Arbez M et al. *Int J Mol Sci* 2018

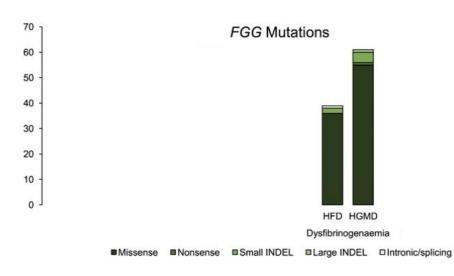
Mutational epidemiology: afibrinogenemia


Ramanan R et al. Br J Haematol 2023

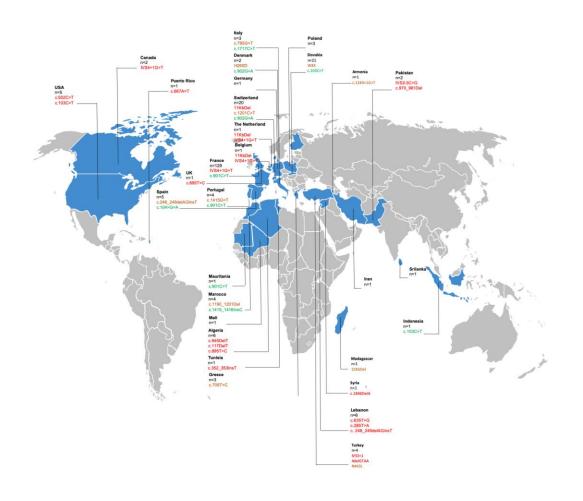


Mutational epidemiology: hypofibrinogenemia


Ramanan R et al. Br J Haematol 2023



Mutational epidemiology: dysfibrinogenemia


Ramanan R et al. Br J Haematol 2023

Hotspot mutations

Hotspot mutations

- FGA exon 2, p.Arg35
 FGG exon 8, p.Arg301
- FGA 11Kb deletion
- FGA IVS4+1G>T

Regional clusters

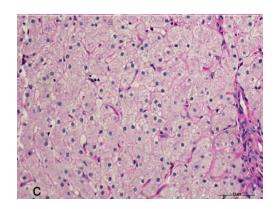
- Lebanon
- India
- Pakistan

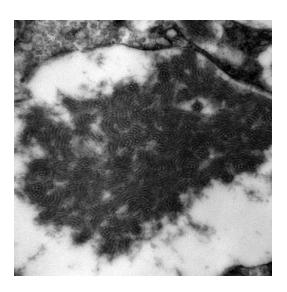
Why genotype is important in HFDs?

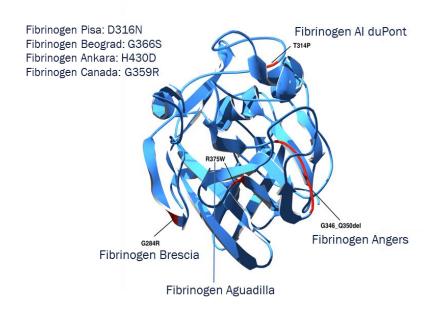
Confirmation of diagnosis

Distinguish between afibrinogenemia and severe hypofibrinogenemia, and between dysfibrinogenemia and hypodysfibrinogenemia

Facilitate family screening and prenatal diagnosis

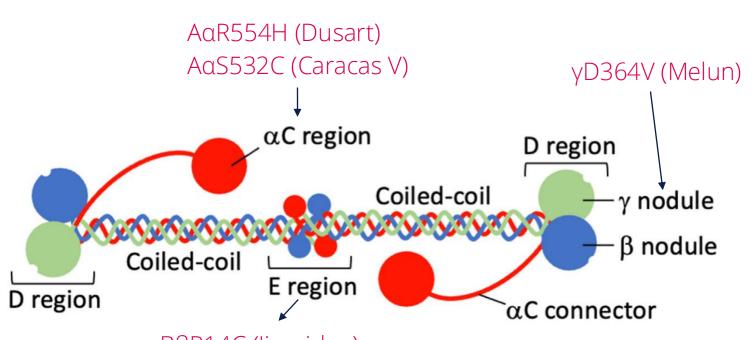

Identify specific subtypes of HFDs





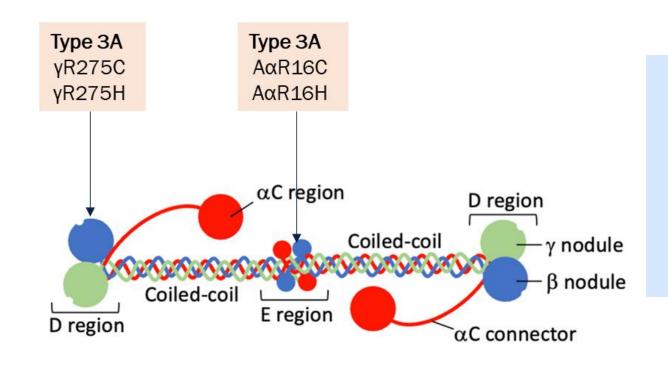
Hypofibrinogenemia type 2D: fibrinogen storage disease

- Accumulation of fibrinogen aggregates in the hepatocellular endoplasmic reticulum
- Mutations clustered in exons 8 and 9


Asselta R et al. *Int J Mol Sci* 2020 Kehar M et al. *Ultrastruct Pathol* 2024

Thrombotic-related dysfibrinogenemia (type 3B)

First-degree familial thrombotic history (relatives with the same genotype) without any other thrombophilia


BβR14C (Ijmuiden) BβDel9-72 (New York I) BβR44C (Nijmegen) BβA68T (Naples)

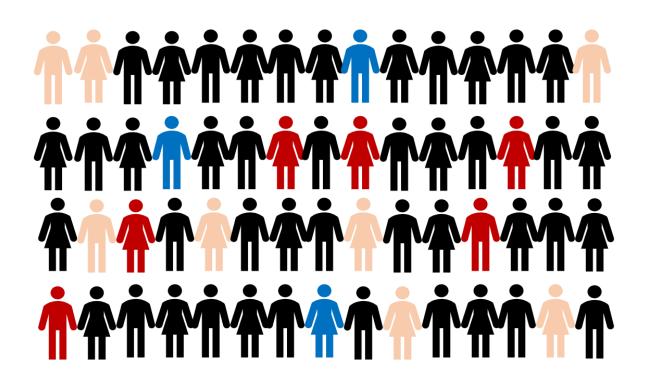
Wolberg A J *Thromb Haemost* 2023 Casini A et al. J Thromb Haemost 2015

Hotspots mutations in dysfibrinogenemia (type 3A)

Major bleeding

FGA Arg35 HR 0.8 (95%CI 0.1-4.1) FGG Arg301 HR 1.2 (95%CI 0.4-4.1)

Thrombotic event


FGA Arg35 HR 0.8 (95%CI 0.3-2.4) FGG Arg301 HR 1.1 (95%CI 0.5-2.6)

Casini A et al. Blood 2015

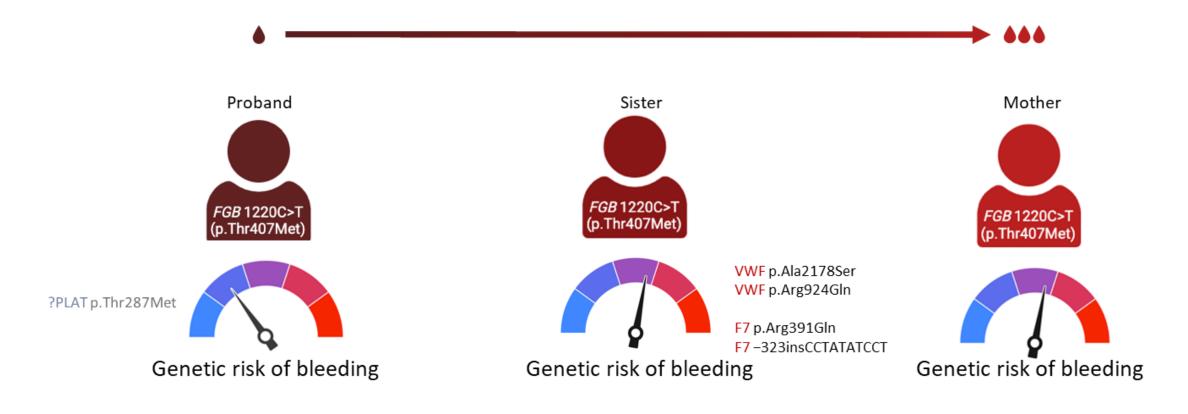
Genetic modifiers of the phenotype?

Polymorphisms
FGB Arg478
FGG Thr331
F13 Val35

Other coagulation imbalances

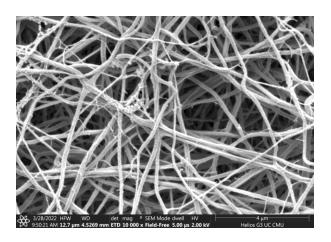
FV Leiden

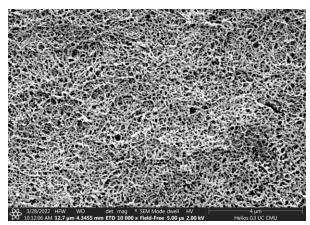
FVII deficiency

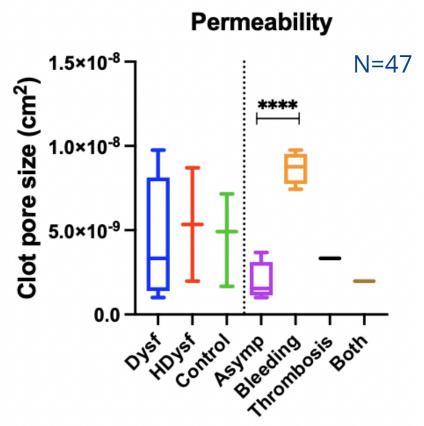

Low FVW

Blood group

Toward oligogenic traits in HFDs




Courtesy of Alexander Couzens



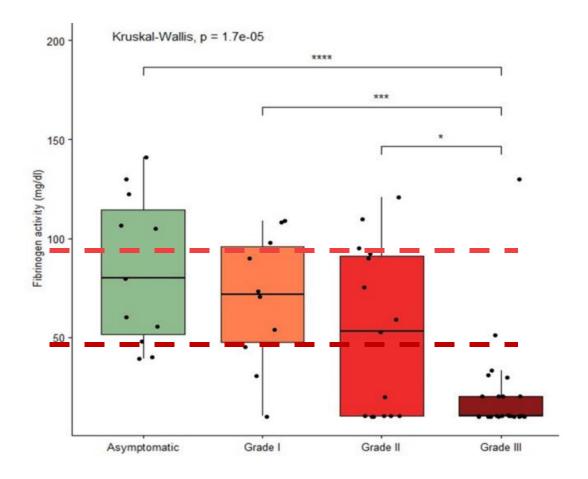
Prediction of the clinical phenotype

Fibrinogen FGA c.1717C>G

Courtesy of Barbara Barath

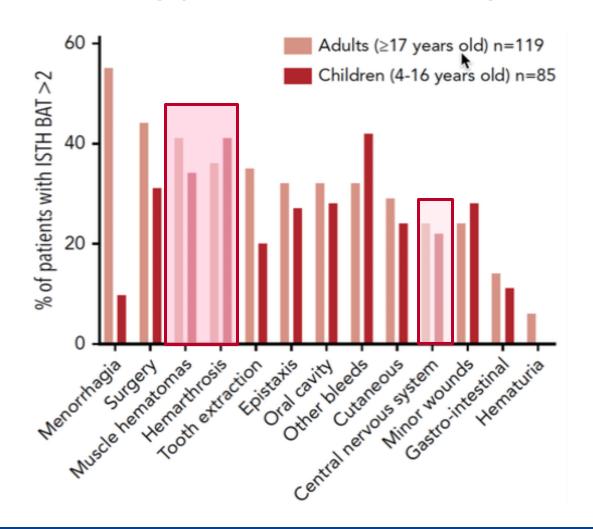
Conclusions 2

- Genotype is essential to confirm the diagnosis
- Mutations in exon 2 of FGA and exon 8 of FGG are frequent in dysfibrinogenemia
- Some fibrinogen variants are strongly associated with a clinical phenotype



- Diagnosis of hereditary fibrinogen disorders (HFDs)
- Genotype
- Clinical features
- Management
- Conclusions

Bleeding risk depend on fibrinogen level in quantitative HFDs

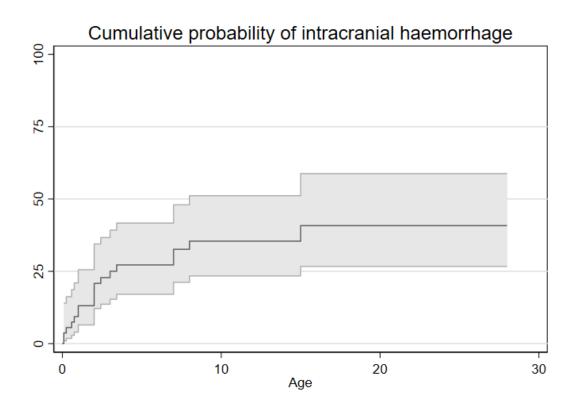

Mohsenian S et al. Blood Adv 2024

Bleeding pattern in afibrinogenemia

Frequency of bleeding

- o 1% (0.5%) several time per day
- o 8 (3.9%) several time per week
- o 32 (15.7) several time per month
- o 125 (61.3%) several time per year

Incidence bleeding per year


1 – 16.5 patients on demand

Casini A et al. *Blood* 2021 Peyvandi F et al. *J Thromb Haemost* 2006

Cerebral bleeding in afibrinogenemia

58 children from Egypt without prophylaxis

- 31% history of cerebral bleeding
- First episode at a median age of 1 year

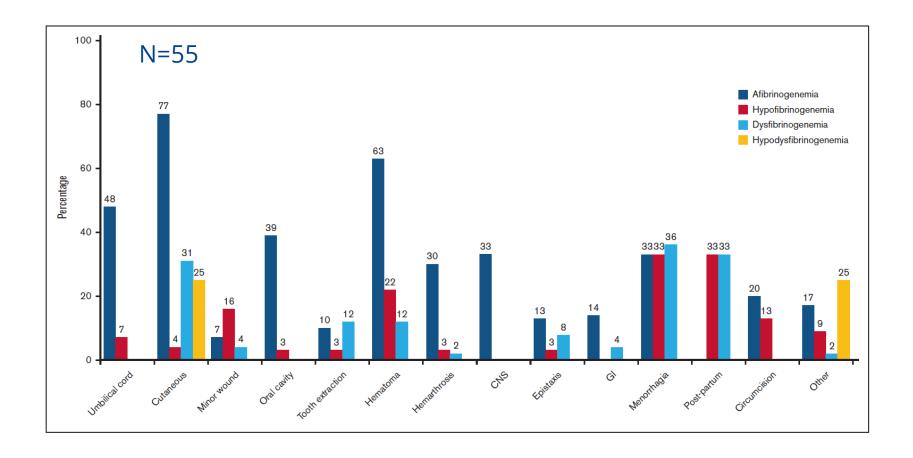
Cumulative incidence

- 10 years 35% (95%Cl 23-51)
- 20 years 40% (95%CI 26.7-58)

Abdelwahab M et al. Haemophilia 2023

Thrombosis and other symptoms in afibrinogenemia

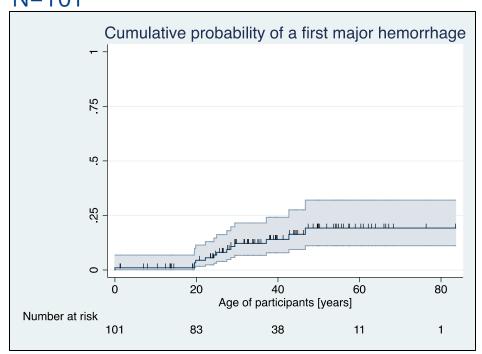
Variable	All patients	Adults (aged ≥17 y)	Children (aged 8-15 y)	Children (aged 4-7 y)
	N = 204	n = 119	n = 62	n = 23
Thrombotic phenotype, no. (%) Total Venous ArterialII Both	37 (18.1)	31 (26.1)	4 (6.5)	2 (8.7)
	16 (43.3)	10 (32.3)	4 (100)	2 (100)
	11 (29.7)	11 (35.4)	0 (0)	0 (0)
	10 (27)	10 (32.3)	0 (0)	0 (0)
Spontaneous spleen rupture, no. (%)	11 (5.4)	8 (6.7)	3 (4.8)	0 (0)
Bone cysts, no. (%) Yes Unknown	36 (17.6)	15 (12.6)	17 (27.4)	4 (17.4)
	3 (1.47)	0 (0)	1 (1.6)	2 (8.7)

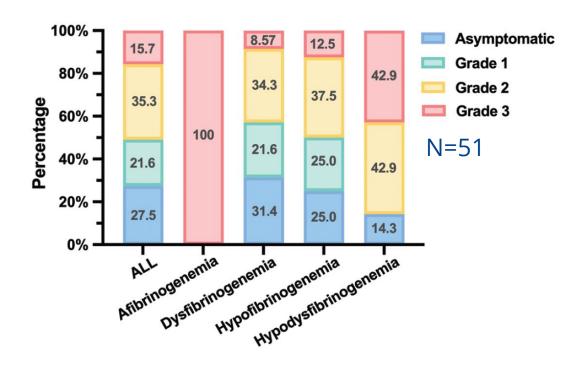

- Splanchnic thromboses → frequent type of venous thrombosis
- Spontaneous spleen rupture → life-threatening events
- o Bone cysts → especially in younger patients

ISLH
INTERNATIONAL SOCIETY FOR
LABORATORY HEMATOLOGY

Bleeding pattern in dysfibrinogenemia

Mohsenian S et al. Blood Adv 2024

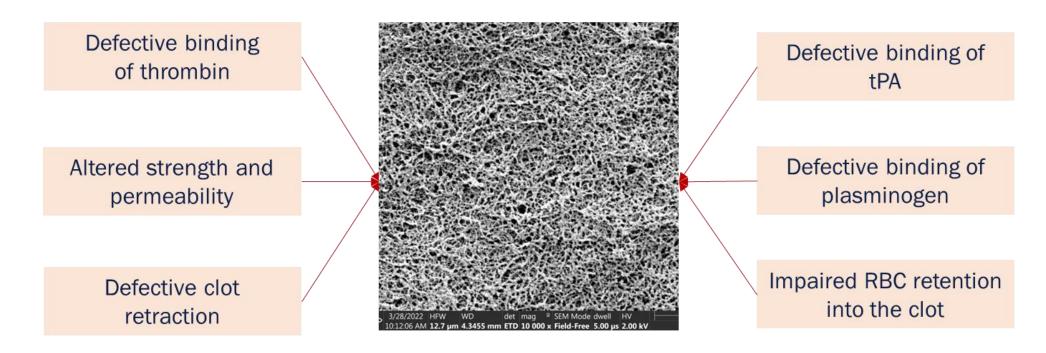




Risk of major bleeding in dysfibrinogenemia

N = 101

Cumulative incidence 50 years 19.2% (95%Cl 11.1-31.9)

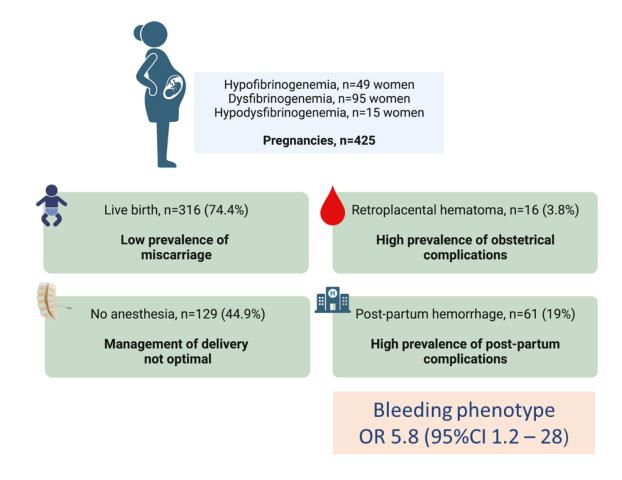

Casini A et al. *Blood* 2015 Cai Y et al. *Thromb Haemost* 2025

Thrombosis in dysfibrinogenemia

Cumulative incidence 50 years 30.1% (95%CI 20.1-43.5)

Casini A et al. Blood 2015

Pregnancy issues



- Miscarriages
- Stillbirth
- Placenta abruptio
- Intra-uterine growth retardation
- Vaginal bleeding
- Post-partum hemorrhage
- Thrombosis

In the absence of fibrinogen replacement

Obstetric outcomes

Conclusions 3

- In quantitative fibrinogen disorders the bleeding risk depends on the fibrinogen level
- Patients with HFDs are at risk of thrombotic events
- o Pregnancy is high-risk clinical situation for all women with HFDs

- Diagnosis of hereditary fibrinogen disorders (HFDs)
- Genotype
- Clinical features
- Management
- Conclusions

Available sources of fibrinogen

Product	Standard posology	Formula to estimate the amount of fibrinogen to be administered	
Fibrinogen concentrates*			
FibCLOT (Clottafact)	50-75 mg/kg	(Target fibrinogen activity [g/L] – measured fibrinogen activity [g/L]) \times body weight (kg) \times (1/incremental recovery)†	
RiaSTAP (Haemocomplettan P)	50-75 mg/kg		
Fibryga	50-75 mg/kg		
Other sources			
Cryoprecipitate	10-20 units	(Target fibrinogen activity [g/L] – measured fibrinogen activity [g/L] × plasma volume) ÷ fibrinogen per unit of cryoprecipitate (mg)‡	
Fresh frozen plasma	15-30 mL/kg	(Target fibrinogen activity [g/L] – measured fibrinogen activity [g/L] × plasma volume) ÷ fibrinogen per unit of fresh frozen plasma (mg)§	

Casini A *Blood* 2025

Fibrinogen concentrate is the first option

- Predictable rise of fibrinogen
- Lower procoagulant factors
- Smaller reconstitution volume
- Lower risk of overload
- Low risk of transfusion complications
- No ABO specificity

Négrier C et al. *Vox Sang* 2016 Menegatti M et al. *Blood* 2019

Prophylaxis versus on demand?

Questionnaire based study, n=100

- Incidence of bleeding 0.5 (0 2.6) on prophylaxis
- Incidence of bleeding 0.7 (0 16.5) on demand

Prospective study, n = 22

- ABR 1.2 on prophylaxis
- ABR 0.8 on demand

Delphi study

 Consensus on starting prophylaxis in case of life-threatening bleeding or recurrent bleeding

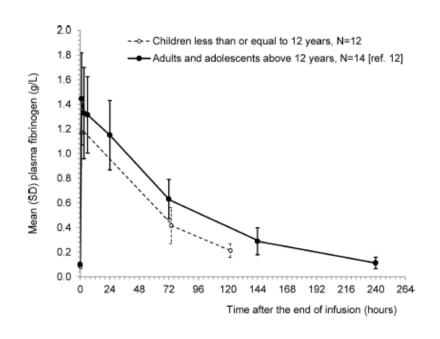
> Peyvandi F et al. *J Thromb Haemost* 2006 Lasky J et al. *Res Pract Thromb Haemost* 2020 Casini at al. *Haemophilia* 2016

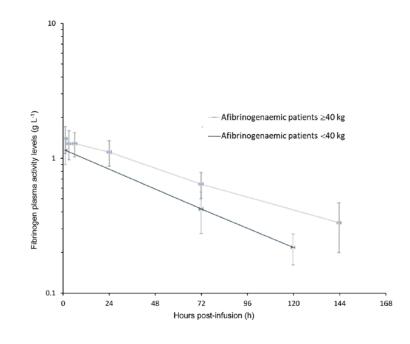
Multidisciplinary and tailored approach

Personal and familial history of bleeding

Availability of fibrinogen product

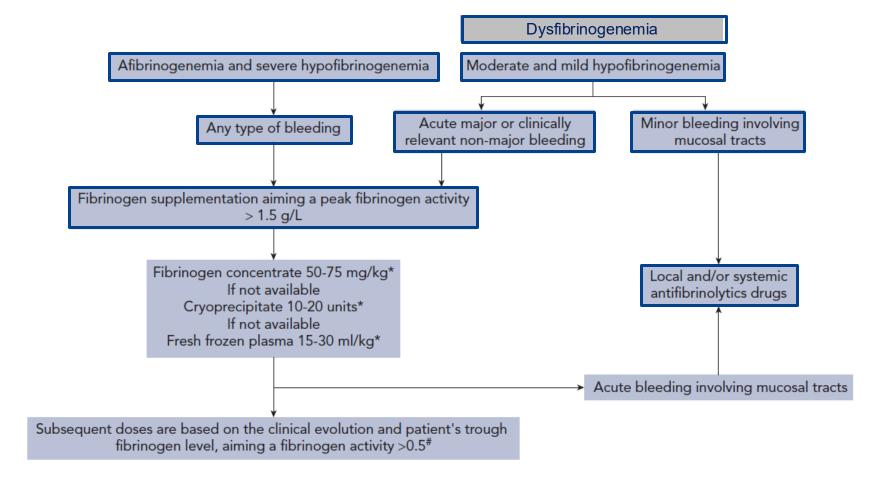
Risk of catheter-related thrombosis and infection



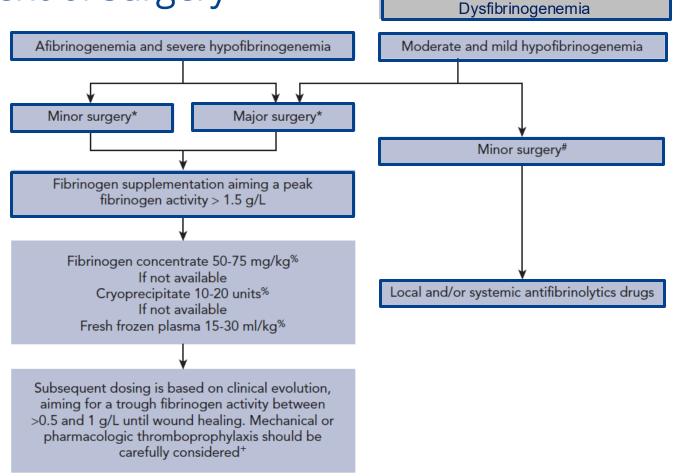

Repeated hospital visits or the administration of fibrinogen infusions in the home

Individualized pharmacokinetics

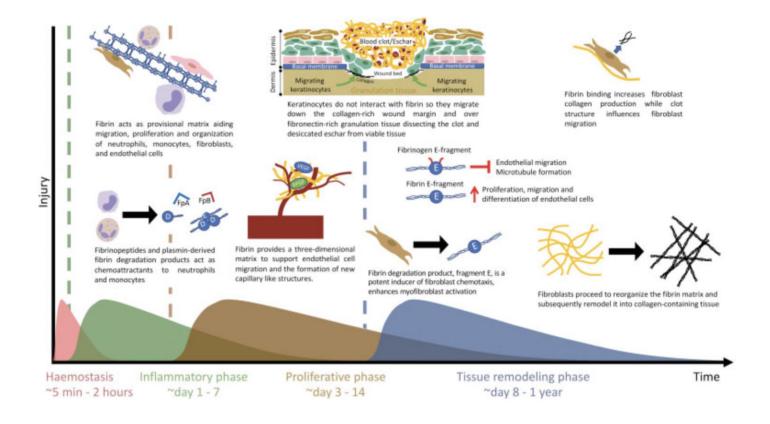
Target fibrinogen trough level >0.5 g/L
Once or twice injections per week or every two weeks


Khayat C et al. *Thromb Haemost* 2020 Bellon C et al. *Br J Clin Pharmacol* 2020

Management of acute bleeding

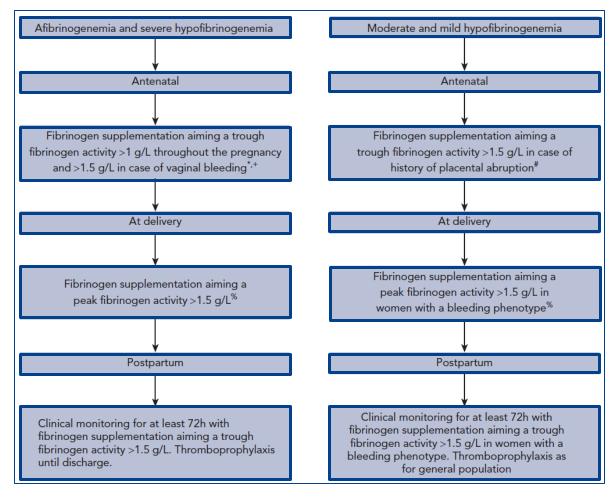

Casini A *Blood* 2025

Management of surgery


Casini A Blood 2025

Until wound healing

Fibrinogen level >0.5 g/L


Kearney K et al. Semin Thromb Hemost 2022

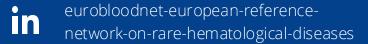
Management of pregnancy

Casini A et al. J Thromb Haemost 2024

Conclusions

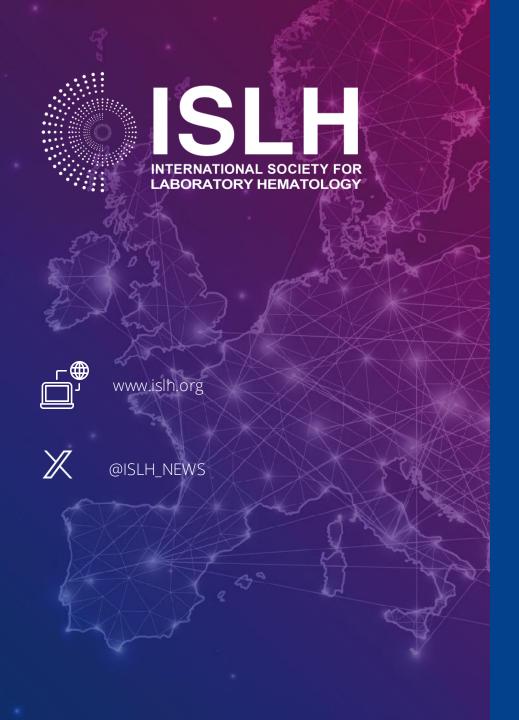
- HFDs encompass a large group of fibrinogen deficiencies with specific clinical features and bleeding and/or thrombotic risks
- o The diagnosis is based on the measurement of functional and antigenic fibrinogen
- o The genotype confirms the diagnosis and may help to predict the clinical phenotype
- o Fibrinogen replacement is the mainstay of treatment for HFDs

alessandro.casini@hug.ch


www.eurobloodnet.eu

@ERNEuroBloodNet

Eurobloodnet - European Reference Network on Rare Hematological Diseases



ERN-EuroBloodNet's EDUcational Youtube channel

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority can be held responsible for them.

